FEUILLE D'EXERCICES # 4

Exercice 1 \ Vrai ou faux?

Soit F_X la fonction de répartition d'une variable aléatoire réelle X et a,b deux réels. Les énoncés suivants sont-ils vrais?

- 1. Si a < b alors $F_X(a) < F_X(b)$.
- 2. $\lim_{a\to 1} F_X(a) = \infty$.
- 3. $\mathbb{P}(X < a) = \lim_{n \to \infty} F_X(a 1/n)$.
- 4. $\mathbb{P}(X \le a) = \lim_{n \to \infty} F_X(a + 1/n)$.
- 5. $\mathbb{P}(a < X < b) = F_X(b) F_X(a)$.

Exercice 2 Une fonction de répartition

Soit X une variable aléatoire réelle dont la fonction de répartition F_X est donnée par :

$$F_X(x) = \frac{1}{4} 1_{[2,+\infty[}(x) + \frac{x-1}{4} 1_{[1,4[}(x) + \frac{3}{4} 1_{[4,+\infty[}(x), x \in \mathbb{R}.$$

- 1. Tracer le graphe de F_X .
- 2. La variable aléatoire X est-elle une variable aléatoire discrète? est-elle à densité?
- 3. Calculer $\mathbb{P}(X > 3)$, $\mathbb{P}(X < 3)$, $\mathbb{P}(X = 2)$ et $\mathbb{P}(a < X < b \text{ et } X \neq 2)$ pour $1 \leq a < 2 < b \leq 4$.
- 4. Déterminer $F_X^{-1}(u)$ pour $u \in]0,1[$. Soit U une variable aléatoire de loi uniforme sur [0,1]. Quelle est la loi de $F_X^{-1}(U)$?

Rappel: si F est une fonction de répartition, alors $F^{-1}(u) := \inf \{x \in \mathbb{R}; F(x) \geq u\}, u \in]0,1[$.

Exercice 3 Encore des fonctions de répartition

1. Montrer qu'il existe une variable aléatoire X dont la fonction de répartition vaut

$$F_X(t) = (1 + e^{-t})^{-1}, \quad \forall t \in \mathbb{R}.$$

- 2. La variable X admet-elle une densité f_X ? Si oui, explicitez cette densité.
- 3. On définit de nouvelles variables en posant $U := e^X$, $V := \mathbb{1}_{\{0 < X < \log(2)\}}$ et $W := X\mathbb{1}_{\{0 < X < 1\}}$. Déterminer les lois des variables U, V et W.

Exercice 4 Min et max de variables indépendantes

Soient $X_1, X_2, ..., X_n$ des variables aléatoires réelles indépendantes et de même loi, définies sur un même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. On désigne par F leur fonction de répartition commune. Déterminer les fonctions de répartitions de $m_n = \min_{i=1...n} X_i$ et $M_n = \max_{i=1...n} X_i$. Dans le cas où les X_i sont de loi uniforme dans [0,1], si on pose $Z_n := n \times m_n$, que dire de la fonction de répartition F_{Z_n} lorsque n tend vers l'infini?

Exercice 5 | Somme de variables indépendantes

- 1. Soient X et Y des variables aléatoires indépendantes de loi binomiales $\mathcal{B}(n,p)$ et $\mathcal{B}(m,p)$ respectivement, où $m, n \in \mathbb{N}^*$ et $p \in [0,1]$. Déterminer la loi de X+Y. Interpréter ce résultat en terme de jeu de pile ou face.
- 2. Soient X et Y deux variables aléatoires indépendantes, de loi de Poisson $\mathcal{P}(\lambda)$ et $\mathcal{P}(\mu)$, où $\lambda, \mu > 0$. Déterminer la loi de X + Y.

Exercice 6 Extrema de lois usuelles

- 1. Soient X et Y des variables aléatoires indépendantes de loi géométriques $\mathcal{G}(p)$ et $\mathcal{G}(q)$ où $p, q \in [0, 1[$. Déterminer les lois de $X \vee Y = \max(X, Y)$ et $X \wedge Y = \min(X, Y)$.
- 2. Même question si X et Y sont des variables indépendantes de lois exponentielles $\mathcal{E}(\lambda)$ et $\mathcal{E}(\mu)$, avec $\lambda, \mu > 0$. Calculer $\mathbb{P}(X < Y)$.
- 3. Soient U_0, \ldots, U_n des variables aléatoires indépendantes de loi uniforme sur [0,1] et N une variable aléatoire indépendante des $(U_i)_{0 \le i \le n}$ de loi binomiale $\mathcal{B}(n,p)$ avec $n \ge 1$ et $p \in [0,1]$. Déterminer la loi de $Z := \min_{0 \le i \le N} U_i$.

Exercice 7 \star) Propriété d'absence de mémoire

On dit qu'une variable aléatoire X à valeurs dans \mathbb{R}^+ (respectivement \mathbb{N}^*) vérifie la propriété d'absence de mémoire si

$$\mathbb{P}(X > s + t) = \mathbb{P}(X > s)\mathbb{P}(X > t), \quad \forall s, t \ge 0$$

et respectivement

$$\mathbb{P}(X>k+\ell)=\mathbb{P}(X>k)\mathbb{P}(X>\ell), \quad \forall k,\ell \in \mathbb{N}.$$

- 1. Montrer que si X suit la loi exponentielle $\mathcal{E}(\lambda)$ alors X vérifie la propriété d'absence de mémoire. Étudier la réciproque.
- 2. Montrer que si X suit la loi géométrique $\mathcal{G}(p)$ alors X vérifie la propriété d'absence de mémoire. Étudier la réciproque.

Exercice 8) \star) Quelques transformations remarquables

- 1. Soit X une variable aléatoire de loi uniforme sur $[-\pi/2, \pi/2]$. Déterminer la loi de $Y = \tan(X)$.
- 2. Soit X une variable aléatoire de loi de Cauchy $\mathcal{C}(1)$. Déterminer la loi de la variable Y = 1/X.
- 3. Soit U une variable aléatoire de loi uniforme sur [0,1] et $\lambda > 0$. Déterminer la loi de la variable $Y = -\frac{1}{\lambda} \log(U)$.
- 4. Soit ε une variable aléatoire de loi de Rademacher i.e $\mathbb{P}(\varepsilon = -1) = \mathbb{P}(\varepsilon = 1) = 1/2$ et X une variable gaussienne $\mathcal{N}(0,1)$ indépendante de ε . Quelle est la loi de $Y = \varepsilon X$. Généraliser.

Exercice 9) Densités et marginales

Soit (X,Y) un couple de variables aléatoires dont la densité par rapport à la mesure de Lebesgue sur \mathbb{R}^2 est donnée par

$$f_{X,Y}(x,y) = c y \mathbb{1}_{[0,2]}(x) \mathbb{1}_{[0,1]}(y).$$

- 1. Déterminer la valeur de la constante c. Calculer les densités marginales f_X et f_Y . Les variables X et Y sont-elles indépendantes?
- 2. Mêmes questions pour $f(x,y) = c y(x-y) \exp(-(x+y)) \mathbb{1}_{0 \le y \le x}$.