Contrôle continu # 1

Exercice 1) Fonctions lipschitziennes

On rappelle que l'espace $C([0,1],\mathbb{R})$ muni de la norme $||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|$ est complet. On désigne par E l'ensemble des fonctions de [0,1] dans \mathbb{R} qui sont lipschitziennes, i.e. l'ensemble des fonctions f telles qu'il existe M = M(f) avec $|f(x) - f(y)| \le M|x - y|$ pour tout $x, y \in [0,1]$. On définit sur E la fonction suivante :

$$N(f) := ||f||_{\infty} + \sup_{0 \le x < y \le 1} \frac{|f(x) - f(y)|}{|x - y|}.$$

1. Montrer que N est une norme sur E.

N est clairement positive et homogène. Si N(f) = 0, on a en particuler $||f||_{\infty} = 0$ et comme $||\cdot||_{\infty}$ est une norme, on a en particulier f = 0. Enfin si f et g sont deux fonctions de E, on a pour tout $x, y \in [0, 1]$ par l'inégalité triangulaire (pour la valeur absolue)

$$|(f+g)(x) - (f+g)(y)| \le |f(x) - f(y)| + |g(x) - g(y)|$$

de sorte que

$$\sup_{0 \le x < y \le 1} \frac{|(f+g)(x) - (f+g)(y)|}{|x-y|} \le \sup_{0 \le x < y \le 1} \frac{|f(x) - f(y)|}{|x-y|} + \sup_{0 \le x < y \le 1} \frac{|g(x) - g(y)|}{|x-y|};$$

Par ailleurs, $\|\cdot\|_{\infty}$ est une norme donc vérifie l'inégalité triangulaire, aussi on a bien

$$N(f+g) \le N(f) + N(g),$$

i.e. N est bien une norme.

2. Montrer que (E, N) est un espace de Banach, i.e. un espace vectoriel normé complet. E est clairement un espace vectoriel. Soit (f_n) une suite de Cauchy dans (E, N). Pour tout $\varepsilon > 0$, il existe ainsi un rang n_0 de sorte que pour tout $m, n \ge n_0$ on ait

$$N(f_n - f_m) \le \varepsilon$$
, en particulier $||f_n - f_m||_{\infty} \le \varepsilon$.

Comme $(C([0,1],\mathbb{R}),\|\cdot\|_{\infty})$ est complet, la suite f_n converge pour la norme $\|\cdot\|_{\infty}$ vers une fonction continue f. Par ailleurs, la suite (f_n) étant de Cauchy dans (E,N), elle y est bornée, ainsi il existe C>0 tel que $N(f_n)\leq C$ pour tout $n\geq 0$. En particulier, on a pour tout $n\geq 0$

$$\sup_{0 \le x < y \le 1} \frac{|f_n(x) - f_n(y)|}{|x - y|} \le C$$

et en passant à la limite en n on obtient

$$\sup_{0 \le x < y \le 1} \frac{|f(x) - f(y)|}{|x - y|} \le C$$

de sorte que $f \in E$. Enfin, f_n converge vers f au sens de la norme N. En effet, en revenant au fait que f_n est de Cauchy, pour $n, m \ge n_0$, on a $N(f_n - f_m) < \varepsilon$, et en faisant tendre m vers l'infini, il vient $N(f_n - f) < \varepsilon$, d'où le résultat.

Exercice 2) Théorème du point fixe de Banach-Picard

Soient (E, d) un espace métrique complet et $f: E \to E$ une application contractante, i.e. il existe $k \in [0, 1[$ tel que, pour tout $(x, y) \in E \times E$, $d(f(x), f(y)) \le kd(x, y)$. On dit qu'un point $x_* \in E$ est un point fixe de f si $f(x_*) = x_*$.

1. Montrer que si f admet un point fixe, il est unique.

Si x_* et x^* étaient deux points fixes distincts de f, alors comme f est contractante, on aurait

$$d(x_*, x^*) = d(f(x_*), f(x^*)) < k d(x_*, x^*)$$

ce qui impliquerait que $d(x_*, x^*) = 0$ car k < 1, et on aurait ainsi $d(x_*, x^*) = 0$ pour $x_* \neq x^*$ ce qui contredit la définition d'une distance.

2. En considérant la suite récurrente $x_{n+1} = f(x_n)$ issue de $x_0 \in E$, montrer que f admet effectivement un point fixe x_* dans E.

Par définition de la suite (x_n) , on a alors par récurrence

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) < k \, d(x_n, x_{n-1}) < \dots < k^n \, d(x_1, x_0).$$

Par l'inégalité triangulaire, on obtient alors

$$d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$\leq (k^n + k^{n+1} + \dots + k^{n+p-1}) d(x_1, x_0)$$

$$= k^n (1 + k + \dots + k^{p-1}) d(x_1, x_0) \leq \frac{k^n}{1 - k} d(x_1, x_0).$$

Ainsi, la suite (x_n) est de Cauchy et comme E est complet, elle converge vers un point x_* de E. Par définition de la suite récurrence, nécessairement on a alors $x_* = f(x_*)$.

3. Montrer que l'on peut estimer la vitesse de converge via l'inégalité

$$d(x_n, x_*) \le \frac{k^n}{1-k} d(x_1, x_0).$$

On passe à la limite $p = +\infty$ dans la dernière inégalité pour obtenir la borne désirée.

4. Question bonus : on ne suppose plus f contractante mais on suppose qu'elle admet une itérée contractante, i.e. il existe $p \ge 1$, tel que $f^p = \underbrace{f \circ \ldots \circ f}_{p \text{ fois}}$ est contractante. Montrer que f admet

un unique point fixe dans E.

On applique le point précédent à la fonction contractante f^p . Il existe ainsi un unique $x_* \in E$ tel que $f^p(x_*) = x_*$. En appliquant encore une fois f on obtient alors

$$f(f^p(x_*)) = f^{p+1}(x_*) = f^p(f(x_*)) = f(x_*).$$

Autrement dit, $f(x_*)$ est un point fixe de f^p et par unicité, on conclut que $f(x_*) = x_*$.

Exercice 3 Bonus

Soit $E = \ell^{\infty}$ l'espace vectoriel des suites réelles bornées muni de la norme $||u||_{\infty} = \sup_{n \geq 0} |u_n|$, pour $u = (u_n)_{n \geq 0}$ dans E. On définit l'opérateur T suivant sur E:

$$T(u) = v$$
, avec $v_n = \frac{1}{n+1} \sum_{k=0}^{n} u_k$.

Montrer que T est un opérateur linéaire continue de $(E, \|\cdot\|_{\infty})$ dans lui même et déterminer sa norme d'opérateur $\|T\|$.

L'opérateur T est clairement linéaire. Pour tout $n \ge 0$, si v = T(u), on a

$$|v_n| = \left| \frac{1}{n+1} \sum_{k=0}^n u_k \right| \le \frac{1}{n+1} \sum_{k=0}^n |u_k| \le ||u||_{\infty},$$

de sorte que $||v||_{\infty} = ||T(u)||_{\infty} \le ||u||_{\infty}$ ce qui montre que T est continu de norme $||T|| \le 1$. En choisissant la suite (u_n) constante égale à 1, on voit qu'en fait ||T|| = 1.