FEUILLE D'EXERCICES # 1

Exercice 1 Sanity check

Soit (E,d) un espace métrique. Montrez que les boules ouvertes de E sont ouvertes, les boules fermées sont fermées et les sphères sont fermées.

Exercice 2 \ Convergence de suite

Soit (x_n) une suite de Cauchy dans un espace métrique (E, d).

- 1. Montrez que pour toute suite (ϵ_n) de réels strictement positifs tendant vers zéro, il existe une sous-suite $(x_{\varphi(n)})$ telle que $d(x_{\varphi(n)}, x_{\varphi(n+1)}) \le \epsilon_n$ pour tout $n \ge 0$.
- 2. Montrez que si (x_n) admet une sous-suite convergente, alors (x_n) est elle-même convergente.

Exercice 3 Moyenne de Cesaro

Soit $(E, ||\cdot||)$ un espace vectoriel normé réel ou complexe. Soit (u_n) une suite d'éléments de E qui converge vers $u_{\infty} \in E$.

- 1. Montrer que la moyenne de Cesaro $v_n = \frac{u_1 + \dots + u_n}{n}$ converge vers u_{∞} .
- 2. Montrer que la suite $v_n = 2 \times \frac{u_1 + 2u_2 + ... + nu_n}{n^2}$ converge également vers u_{∞} .

Exercice $4 \rightarrow Suites$ extraites

Soient (E,d) un espace métrique et (u_n) une suite d'élements de E.

- 1. On suppose que les suites extraites (u_{2n}) , (u_{2n+1}) et (u_{7n}) sont convergentes. Montrer que la suite (u_n) est alors elle-même convergente.
- 2. Expliciter un exemple de suite réelle (u_n) qui ne converge pas, mais qui est telle que pour tout $k \geq 2$, les sous-suites (u_{kn}) sont convergentes (pensez aux nombres premiers).

Exercice 5 * Inégalités de Hölder et Minkowski

Soient $(p,q) \in [1, +\infty[$ deux exposants conjugués, i.e. tels que 1/p + 1/q = 1.

- 1. Montrer que si a, b sont deux réels alors $|ab| \leq \frac{a^p}{p} + \frac{b^q}{q}$.
- 2. Montrer que si $(a_i)_{1 \leq i \leq n}$ et $(b_i)_{1 \leq i \leq n}$ sont deux vecteurs de \mathbb{R}^n alors

$$\sum_{i=1}^{n} |a_i b_i| \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |b_i|^q\right)^{1/q}.$$

3. Montrer que

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^q\right)^{1/q}.$$

Exercice 6 \star Minorations générales

Soit $(E, ||\cdot||)$ un espace vectoriel normé réel ou complexe. Montrer que pour tout $u, v \in E$ non nuls

$$||u-v|| \geq \frac{1}{2} \max(||u||, ||v||) \left| \left| \frac{u}{||u||} - \frac{v}{||v||} \right| \right|, \quad ||u-v|| \geq \frac{1}{4} \left(||u|| + ||v|| \right) \left| \left| \frac{u}{||u||} - \frac{v}{||v||} \right| \right|.$$

où les constantes 1/2 et 1/4 sont optimales.

Exercice 7 Fonction séparatrice

Soit (E,d) un espace métrique et A,B des parties non vides de E à distance positive, i.e. vérifiant la minoration $d(A,B) := \inf\{d(a,b), \ a \in A, b \in B\} > 0$. Pour $u \in E$, on pose

$$f(u) := \frac{d(u, A)}{d(u, A) + d(u, B)}.$$

- 1. Montrer que la fonction est bien définie et vérifie $0 \le f \le 1$, $f_{|A} = 0$, $f_{|B} = 1$.
- 2. Montrer que f est lipschitzienne, précisément que l'on a pour tout $u, v \in E$

$$|f(u) - f(v)| \le \frac{d(u, v)}{d(A, B)}.$$

Exercice 8) $Uniforme\ continuit\'e$

Soit $f \in C(\mathbb{R}, \mathbb{R})$ une fonction continue.

- 1. Montrez que si f est périodique, elle est uniformément continue.
- 2. De même si elle admet des limites finies en $\pm \infty$.
- 3. Montrez que si f est uniformément continue alors pour toute suites réelles $(x_n), (y_n)$ telles que $|x_n y_n| \to 0$, on a $|f(x_n) f(y_n)| \to 0$. En déduire que les fonctions $t \mapsto t^2$ et $t \mapsto \sin(t^2)$ ne sont pas uniformément continues.

Exercice 9) Continuité et inverse

Soient (E, d_E) et (F, d_F) deux espaces métriques et $f: E \to F$ une application continue et bijective.

- 1. On suppose (E, d_E) compact. Montrez que f^{-1} est continue.
- 2. Que dire dans le cas où $E = [0, 1[\cup[2, 3], F = [0, 2] \text{ et } f(x) = x \text{ si } 0 \le x < 1 \text{ et } f(x) = x 1 \text{ si } 2 \le x \le 3?$

Exercice 10 Complétude sur $C^1([-1,1],\mathbb{R})$

Sur l'espace des fonctions continues $E = C^1([-1,1],\mathbb{R})$, on pose

$$||f||_{\infty} := \sup_{x \in [-1,1]} |f(x)|, \qquad ||f||_1 := \int_{-1}^1 |f(x)| dx.$$

- 1. Justifier que les quantités ci-dessus sont bien définies et sont des normes sur E.
- 2. Montrer que l'espace $(E, ||\cdot||_{\infty})$ est complet.
- 3. On considère la suite de fonctions (f_n) de E

$$f_n(x) = \begin{cases} -1, & \text{si } x < -\frac{1}{n}, \\ nx & \text{si } -\frac{1}{n} \le x \le \frac{1}{n}, \\ 1 & \text{si } x > \frac{1}{n}. \end{cases}$$

Montrer que la suite (f_n) est de Cauchy dans $(E, ||\cdot||_1)$. Y converge-t-elle?