FEUILLE D'EXERCICES # 2

Exercice 1 Sanity check

Dans la suite, λ désigne la mesure de Lebesgue de \mathbb{R}

- 1. Donnez un exemple d'une suite bornée de $\mathbb{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ convergeant simplement vers 0 mais n'ayant pas de limite dans $\mathbb{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.
- 2. Donner un exemple de fonction $f \in \mathbb{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ telle que $f \notin \mathbb{L}^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ pour tout p > 1, et un exemple de fonction $f \in \mathbb{L}^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ avec p > 1 telle que $f \notin \mathbb{L}^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.
- 3. Soit $(f_n)_{n\geq 0}$ une suite de $\mathbb{L}^p(E,\mathcal{E},\mu)$ qui converge dans \mathbb{L}^p vers f et qui converge également μ -p.p. vers g. Montrer que $g\in\mathbb{L}^p$ et que f=g μ -p.p.
- 4. Soit $(f_n)_{n\geq 0}$ une suite de $\mathbb{L}^p(E,\mathcal{E},\mu)\cap\mathbb{L}^q(E,\mathcal{E},\mu)$ avec $p,q\in[1,+\infty]$ et $p\neq q$. On suppose que $f_n\to 0$ dans \mathbb{L}^p quand $n\to\infty$ et que $(f_n)_{n\geq 0}$ est une suite de Cauchy dans \mathbb{L}^q . Montrer que $f_n\to 0$ dans \mathbb{L}^q quand $n\to\infty$.

Exercice 2 Lemme de Scheffé

Soient $p \in [1, \infty[$ et $(f_n)_{n\geq 0}$ une suite de $\mathbb{L}^p(E, \mathcal{E}, \mu)$ qui converge μ -p.p. vers une fonction f de $\mathbb{L}^p(E, \mathcal{E}, \mu)$. Montrer l'équivalence suivante :

$$\lim_{n \to \infty} ||f_n - f||_p = 0 \Longleftrightarrow \lim_{n \to \infty} ||f_n||_p = ||f||_p.$$

Indice : appliquer le lemme de Fatou à $g_n = 2^p (|f_n|^p + |f|^p) - |f_n - f|^p$.

Exercice $3 \rightarrow Exposants dans les espaces de Lebesgue$

Soit f une fonction mesurable sur (E, \mathcal{E}, μ) , avec $||f||_{\infty} > 0$. Pour 0 , on pose

$$\varphi(p) := \int_E |f|^p d\mu, \quad \text{ et } \quad I := \{ p \in \mathbb{R}_+^* : \varphi(p) < \infty \}.$$

- 1. Montrer que I est un intervalle (penser à l'inégalité de Hölder).
- 2. Montrer que $\ln \circ \varphi$ est convexe sur I et que φ est continue sur I.

Exercice 4) Variante de l'inégalité de Hölder

Soient $p,q,r \geq 1$ des réels tels que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Si $f \in \mathbb{L}^p(E,\mathcal{E},\mu)$ et $g \in \mathbb{L}^q(E,\mathcal{E},\mu)$, montrer que $fg \in \mathbb{L}^r(E,\mathcal{E},\mu)$ avec

$$||fg||_r \le ||f||_p \times ||g||_q.$$

Exercice $5 \star Convergence des normes p$

Soient a, b deux réels avec a < b et soit $f \in \mathbb{L}^{\infty}([a, b], \lambda)$. Démontrer que

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

Indice: par définition de la norme sup, pour tout $\varepsilon > 0$, il existe un ensemble mesurable $A \subset [a,b]$ tel que $\lambda (\{x \in A, |f(x)| \ge ||f||_{\infty} - \varepsilon\}) > 0$.

Exercice 6 \(\ \ \ \ \ \ \ \ \ \ Sur les espaces de fonctions bornées

Soient X et E deux espaces vectoriel normés, on note B(X,E) l'ensemble des fonctions bornées de X dans E et $C_b(X,E)$ l'ensemble des fonctions continues bornées de X dans E. On rappelle que la norme infinie sur B(X,E) est définie par $||f||_{\infty} := \sup_{x \in X} ||f(x)||_{E}$.

- 1. Montrer que l'ensemble des fonctions constantes de X dans E, noté $\operatorname{Const}(X, E)$ est un sous-espace fermé de $(B(X, E), \|\cdot\|_{\infty})$ qui est isométrique à E.
- 2. Montrer que $C_b(X, E)$ est un sous-espace fermé de $(B(X, E), \|\cdot\|_{\infty})$.
- 3. Établir que

 $E \text{ est complet } \iff (B(X, E), \|\cdot\|_{\infty}) \text{ est complet.}$

Exercice 7 \star) Transformée de Fourier et lemme de Riemann-Lebesgue

Pour toute fonction $f \in \mathbb{L}^1(\mathbb{R})$, on définit la transformée de Fourier de f par la formule

$$(\mathcal{F}f)(\xi) \stackrel{\text{def}}{=} \int_{\mathbb{R}} f(x)e^{-i\xi x}dx$$

1. Montrer que pour tout $f \in \mathbb{L}^1(\mathbb{R}), \mathcal{F}f$ est une fonction continue bornée et que

$$\|\mathcal{F}f\|_{\infty} \le \|f\|_{1}, \quad \forall f \in \mathbb{L}^{1}(\mathbb{R}).$$

2. On suppose que f est dans $C_c^1(\mathbb{R})$. Calculer $\mathcal{F}f$ en fonction de $\mathcal{F}(f')$. En déduire que

$$\lim_{\xi \to \pm \infty} \mathcal{F}f(\xi) = 0, \quad \forall f \in \mathcal{C}_c^1(\mathbb{R}).$$

3. À l'aide de la question précédente, montrer que

$$\lim_{\xi \to \pm \infty} \mathcal{F}f(\xi) = 0, \quad \forall f \in \mathbb{L}^1(\mathbb{R}).$$

4. Pour tout a < b, calculer $\mathcal{F}1_{[a,b]}$ et en déduire une autre démonstration du résultat précédent.

Exercice 8 * Espaces à poids

Soit $w:\mathbb{R}\to]0,+\infty[$ une fonction positive définie sur \mathbb{R} telle que

$$\forall R>0,\quad 0<\inf_{[-R,R]}w\leq \sup_{[-R,R]}w<+\infty.$$

Soit maintenant $(E, \|.\|)$ un espace vectoriel normé, on définit l'espace à poids

$$C_w(\mathbb{R}, E) := \left\{ f \in C(\mathbb{R}, E), \quad \|f\|_{\infty, w} \stackrel{\text{def}}{=} \sup_{t \in \mathbb{R}} \left(w(t) \|f(t)\|_E \right) < +\infty \right\}.$$

- 1. Montrer que $C_w(\mathbb{R}, E)$ est un sous-espace vectoriel de $C(\mathbb{R}, E)$ et que $\|\cdot\|_{\infty, w}$ est une norme sur cet espace.
- 2. Montrer que si E est complet, alors $C_w(\mathbb{R}, E)$ est complet.