FEUILLE D'EXERCICES # 3

Exercice 1) Continue pour une norme, mais pas pour une autre

Soit $T: \mathbb{R}[X] \to \mathbb{R}[X]$ défini par T(P) = P'. Étudier la continuité de T lorsque $\mathbb{R}[X]$ est muni de la norme

- 1. $N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)|;$
- 2. $N_2(P) = \sup_{x \in [0,1]} |P(x)|$.

Exercice 2 Quelques exemples

Déterminer si l'application linéaire $T:(E,N_1)\to (F,N_2)$ est continue dans les cas suivants :

- 1. $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $||f||_1 = \int_0^1 |f(t)| dt$ et $T : (E, ||.||_1) \to (E, ||.||_1)$, $f \mapsto fg$ où $g \in E$ est fixé.
- 2. $E = \mathbb{R}[X]$ muni de $\|\sum_{k\geq 0} a_k X^k\| = \sum_{k\geq 0} |a_k|$ et $T: (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 3. $E = \mathbb{R}_n[X]$ muni de $\|\sum_{k=0}^n a_k X^k\| = \sum_{k=0}^n |a_k|$ et $T: (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 4. $E = \mathbb{R}[X]$ muni de $\|\sum_{k>0} a_k X^k\| = \sum_{k>0} k! |a_k|$ et $T : (E, \|.\|) \to (E, \|.\|), P \mapsto P'$.
- 5. $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{1/2}$, $F = \mathcal{C}([0,1],\mathbb{R})$ muni de $||f||_1 = \int_0^1 |f(t)| dt$ et $T: (E, ||.||_2) \to (F, ||.||_1)$, $f \mapsto fg$ où $g \in E$ est fixé.

Exercice 3 Application identité

Soit N_1 et N_2 deux normes sur l'espace vectoriel E. Montrer que N_1 et N_2 sont équivalentes si et seulement si $Id: (E, N_1) \to (E, N_2)$ et $Id: (E, N_2) \to (E, N_1)$ sont continues.

Exercice 4 Applications linéaires sur les polynômes

Soit $E = \mathbb{R}[X]$, muni de la norme $\|\sum_i a_i X^i\| = \sum_i |a_i|$.

- 1. Est-ce que l'application linéaire $\phi: (E, \|.\|) \to (E, \|.\|), P(X) \mapsto P(X+1)$ est continue sur E?
- 2. Est-ce que l'application linéaire $\psi:(E,\|.\|)\to (E,\|.\|),\,P\mapsto AP,$ où A est un élément fixé de E, est continue sur E?

Exercice 5) Multiplication sur un espace de polynômes

Soit $E = \mathbb{R}[X]$ muni de la norme

$$\left\| \sum_{k \ge 0} a_k X^k \right\|_{\infty} = \sup_{k \ge 0} |a_k|.$$

Soit $T:(E,\|\cdot\|_{\infty})\to (E,\|\cdot\|_{\infty})$ définie par T(P)=XP. Démontrer que T est continue et calculer sa norme.

Exercice 6) Jamais continue !

Soit $E = \mathcal{C}^{\infty}([0,1],\mathbb{R})$. On considère l'opérateur de dérivation $D: E \to E, f \mapsto f'$. Montrer que, quelle que soit la norme N dont on munit E, D n'est jamais une application linéaire continue de (E, N) dans (E, N).

Exercice 7 Un opérateur sur les fonctions continues

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\|\cdot\|_{\infty}$. Pour $f \in E$, on définit l'application linéaire $L(f):[0,1] \to \mathbb{R}$, $L(f)(t):=\int_0^1 (t+u)f(u)du$.

- 1. Justifier que L est un endomorphisme de E.
- 2. Démontrer que L est continue et calculer sa norme d'opérateur ||L||.

Exercice 8 * Une variante

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\|\cdot\|_1$. On considère la forme linéaire $L(f):[0,1]\to\mathbb{R}$, définie par la formule suivante $L(f):=\int_0^1 f(u)g(u)du$ où $g\in E$ est fixée. Montrer que L est continue de norme $||L||=||g||_{\infty}$.

Exercice 9 * Espace de suites

Soit E l'espace des suites réelles convergeant vers zéro, muni de la norme $||u||_{\infty} = \sup_{n\geq 0} |u_n|$ pour $u=(u_n)\in\mathbb{R}^{\mathbb{N}}$. Pour $u\in E$, on définit

$$\varphi(u) := \sum_{n \ge 0} \frac{u_n}{2^n}.$$

- 1. Montrer que φ est linéaire continue de norme $\|\varphi\|=1$.
- 2. Montrer qu'il n'existe aucun $u \in E$, tel que $||u||_{\infty} \le 1$ et $\varphi(u) = 1$.

Exercice 10) *) Intégrale vs somme de Riemann

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\|\cdot\|_{\infty}$. Pour $f \in E$, on pose

$$\varphi(f) = \int_0^1 f(u)du, \qquad \varphi_n(f) = \sum_{k=1}^n f\left(\frac{k}{n}\right).$$

- 1. Montrer que φ et φ_n sont linéaires continues et déterminer leur norme.
- 2. On pose $\psi_n := \varphi \varphi_n$. Montrer que $\lim_{n \to +\infty} \psi_n(f) = 0$ pour tout $f \in E$.
- 3. Montrer que $\|\psi_n\| = 2$ mais que pour n fixé, il n'existe pas de $g \in E$ avec $\|g\|_{\infty} \le 1$ et $|\psi_n(g)| = 2$.