Feuille d'exercices # 4

Exercice 1) Un théorème de point fixe

L'objectif de cet exercice est de démontrer le théorème suivant : si K est un convexe compact d'un espace de Banach E, et si $f:K\to K$ vérifie

$$\forall (x,y) \in K^2, \ \|f(x) - f(y)\| \le \|x - y\|,$$

alors f admet un point fixe. On fixe un point $a \in K$.

1. On définit sur K la suite de fonctions (f_n) par

$$f_n(x) = f\left(\frac{1}{n}a + \left(1 - \frac{1}{n}\right)x\right).$$

Démontrer que, pour chaque n, f_n admet un unique point fixe (t_n) .

2. Conclure.

Exercice 2 Résolution de système

Montrer que le système d'équations suivant

$$\begin{cases} x_1 = \frac{1}{5}(2\sin x_1 + \cos x_2) \\ x_2 = \frac{1}{5}(\cos x_1 + 3\sin x_2) \end{cases}$$

admet une solution unique $(x_1, x_2) \in \mathbb{R}^2$.

Exercice 3 \() \(\pi\) Théorème du point fixe avec paramètre

Soit X et E deux parties d'un espace vectoriel normé, E étant une partie complète. On considère une application $F: X \times E \to E$, $(\lambda, x) \mapsto F(\lambda, x)$ continue, et k-contractante en la seconde variable, c'est-à-dire qu'elle existe $k \in]0,1[$ tel que :

$$\forall \lambda \in X, \ \forall (x,y) \in E^2, \ \|F(\lambda,x) - F(\lambda,y)\| \le k\|x - y\|.$$

Montrer que, pour tout $\lambda \in X$, il existe un unique $x_{\lambda} \in E$ tel que $F(\lambda, x_{\lambda}) = x_{\lambda}$. Montrer ensuite que l'application $X \to E$, $\lambda \mapsto x_{\lambda}$ est continue.

Exercice 4 \() Lemme de Croft

Soit f une fonction continue de \mathbb{R}_+ dans \mathbb{R} qui est telle que pour tout $x \in \mathbb{R}_+$, la suite f(nx) tend vers zéro lorsque n tend vers l'infini. Montrer que f tend vers zéro à l'infini. Indice : on pourra considérer les ensembles $F_n := \{x \in \mathbb{R}, \forall p \geq n, |f(px)| \leq \varepsilon\}$.

Exercice
$$5$$
 \star $) Incomplétude$

Montrer qu'un espace vectoriel normé $(E, \|\cdot\|_E)$ admettant une base infinie dénombrable $(e_n)_{n\geq 1}$ ne peut pas être complet. On pourra considérer les ensembles $F_n := \text{vect}(e_1, \dots, e_n)$.

Exercice 6 Nilpotence

Soit $(E, \|\cdot\|_E)$ un espace de Banach et T une application linéaire continue de $(E, \|\cdot\|_E)$ dans $(E, \|\cdot\|_E)$. On suppose que pour tout $x \in E$, il existe un entier $n = n_x$ tel que $T^n(x) = 0$. Montrer qu'il existe alors un entier n, tel que pour tout $x \in E$, $T^n(x) = 0$. Ce résultat reste-t-il valable si $(E, \|\cdot\|_E)$ n'est pas complet? Penser l'opérateur de dérivation dans $E = \mathbb{R}[X]$.

Exercice 7
$$\star\star$$
 Continuité sur \mathbb{Q} vs $\mathbb{R}\backslash\mathbb{Q}$

Montrer qu'il n'existe pas d'application de \mathbb{R} dans \mathbb{R} qui soit continue en tout point de $\mathbb{R} \setminus \mathbb{Q}$. Il existe en revanche des applications de \mathbb{R} dans \mathbb{R} qui sont continues en tout point de $\mathbb{R} \setminus \mathbb{Q}$ mais discontinues en tout point de \mathbb{Q} !

Exercice 8 * Fonctions continues et nulle part dérivables

On rappelle que $E = C([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$ est un espace de Banach. Pour $\varepsilon > 0$ et $n \geq 0$, on définit

$$U_{\varepsilon,n} := \left\{ f \in E, \, \forall x \in [0,1], \, \exists y \in [0,1], \, 0 < |y-x| < \varepsilon, \left| \frac{f(x) - f(y)}{x - y} \right| > n \right\}.$$

- 1. Montrer que $U_{\varepsilon,n}$ est un ouvert de E.
- 2. Montrer que $U_{\varepsilon,n}$ est dense dans E. Pour $f \in E$, on pourra par exemple considérer la fonction $x \mapsto f(x) + \delta \sin(Nx)$ avec δ et N bien choisis.
- 3. En déduire que l'ensemble des fonctions continues et nulle part dérivables est dense dans $(E, \| \cdot \|_{\infty})$.

Exercice 9 \star Sur les suites réelles

On rappelle que $(\ell^p, \|\cdot\|_p)$ désigne l'espace vectoriel des suites réelles dont la norme p est finie, i.e. $(u_n) \in \mathbb{R}^{\mathbb{N}} \in \ell^p$ si $\|u\|_p := (\sum_n |u_n|^p)^{1/p} <= \infty$.

- 1. Montrer que ℓ^1 est inclu dans ℓ^2 .
- 2. Montrer que ℓ^1 n'est pas fermé dans $(\ell^2,\|\cdot\|_2).$
- 3. On introduit les ensembles

$$F_n := \left\{ (a_k) \in \ell^2, \, ||a||_1 = \sum_k |a_k| \le n \right\}.$$

Montrer que pour tout $n \geq 1$, l'ensemble F_n est un fermé d'intérieur vide de $(\ell^2, \|\cdot\|_2)$.

4. En déduire que ℓ^1 est réunion dénombrable de fermés d'intérieurs vides dans $(\ell^2, \|\cdot\|_2)$.