FEUILLE D'EXERCICES # 6

Exercice 1 | Identification des normes

Soit X un espace de Banach, B_X sa boule unité fermée et B_X^* la boule unité fermée de du dual topologique $X^* = \mathcal{L}(X, \mathbb{R})$. À l'aide du théorème de Hahn–Banach, démontrer les formules suivantes, pour $x_0 \in X$ et $f_0 \in X^*$:

$$||x_0||_X = \sup_{f \in B_{X^*}} |f(x_0)|, \quad ||f_0||_{X^*} = \sup_{x \in B_X} |f_0(x)|.$$

Les bornes supérieures sont-elles atteintes?

Exercice $2 \rightarrow Bornitude$

Soit E un \mathbb{K} -espace vectoriel normé et A une partie de E, telle que pour tout élément $f \in E^*$ f(A) est une partie bornée de \mathbb{K} . Montrer qu'alors A est bornée dans E (la réciproque est claire). Indication : Penser au théorème de Banach-Steinhaus en considérant E comme un sous-espace de son bidual.

Exercice 3 Sur mesure

Soient $(X, ||\cdot||)$ un espace vectoriel normé, (x_1, \ldots, x_n) une famille libre d'éléments de X et $(c_1, \ldots, c_n) \in \mathbb{R}^n$. Montrer qu'il existe une forme linéaire continue f sur X telle que $f(x_i) = c_i$ pour tout $i \in \{1, \ldots, n\}$.

Exercice 4 Exemple d'extension

Montrer qu'il existe une forme linéaire continue $T:(L^{\infty}([0,1]),\|\cdot\|_{\infty})\to (\mathbb{R},|\cdot|)$ de norme 1 et telle que pour toute $f\in C([0,1],\mathbb{R})$ on ait $T(f)=f\left(\frac{1}{2}\right)$.

Exercice 5 Sur les suites réelles

- 1. Pour $x \in \ell^{\infty}$ on pose $p(x) = \limsup_{n \to +\infty} x(n)$. Montrer que p est positivement homogène, sous-additive et que $p(x) \le ||x||_{\infty}$ pour tout $x \in \ell^{\infty}$.
- 2. On considère le sous-espace c de ℓ^{∞} formé par toutes les suites réelles convergentes. À l'aide d'une extension d'une forme linéaire bien choisie sur c, montrer qu'il existe une application linéaire continue $L:\ell^{\infty}\to\mathbb{R}$ telle que, pour tout $u\in\ell^{\infty}$, on ait $\liminf (u_n)\leq L(u)\leq \limsup (u_n)$.
- 3. Calculer la norme de L et montrer que $L(u) \ge 0$ pour tout suite u bornée et à valeurs positives.
- 4. On considère $\Phi: \ell^1 \to (\ell^\infty)^*$ définie par $\Phi(v)(u) = \sum_{n=0}^{+\infty} u_n v_n$. Rappeler pourquoi Φ est bien définie et continue.
- 5. Existe-t-il $v \in \ell^1$ tel que $L = \Phi(v)$?

Exercice 6 Identification d'un dual

Montrer que ℓ^1 est le dual de c_0 , l'espace des suites de limite nulle, muni de la norme $\|\cdot\|_{\infty}$. Construire un élément $\varphi \in (\ell^{\infty})^*$ ne pouvant s'écrire $\varphi(v) = \sum_{n=0}^{\infty} u_n v_n$ pour un certain $u \in \ell^1$.

Exercice 7 * Unicité du prolongement dans le théorème de Hahn-Banach

Soit E un espace vectoriel normé et E^* son dual topologique. Notons S la sphère unité de E^* .

1. On suppose que E^* est strictement convexe, c'est-à-dire :

$$\forall \ell_1, \ell_2 \in S, \quad \ell_1 \neq \ell_2 \Rightarrow \frac{1}{2} (\ell_1 + \ell_2) \notin S.$$

Soit F un sous-espace de E, ℓ une forme linéaire continue sur F de norme 1 . Montrer qu'il existe une unique forme linéaire ℓ sur E, de norme 1 , et prolongeant ℓ .

- 2. On suppose inversement qu'il existe $\ell_1 \neq \ell_2$ deux éléments de S, vérifiant $\frac{\ell_1 + \ell_2}{2} \in S$. Montrer qu'il existe alors une forme linéaire continue φ définie sur un sous-espace vectoriel F de E, qui admet deux prolongements linéaires continus distincts sur E ayant la même norme que φ .
- 3. Trouver un exemple de prolongements multiples de même norme, dans ℓ^1 ainsi que dans ℓ^{∞} , de formes linéaires de norme 1.

Exercice 8 * Compacité et convergence faible

On considère l'espace $E = C([0,1],\mathbb{R})$ muni de la norme uniforme $||\cdot||_{\infty}$. Montrer que la suite de fonctions $\varphi_n(x) = \mathbbm{1}_{[0,1-\frac{1}{n}]}(1-nx)$ est dans la sphère unité de E mais qu'aucune suite extraite de φ_n ne peut converger faiblement vers un élément de E. Que peut-on en déduire? Indication : Pour l'impossiblité de l'extraction convergente, vérifier que la convergence faible dans E implique la convergence simple.

Exercice 9 Équivalence de normes

Soit E un espace muni de deux normes $\|\cdot\|_1$ et $\|\cdot\|_2$ telles que $(E, \|\cdot\|_1)$ et $(E, \|\cdot\|_2)$ soient des espaces de Banach. On suppose que l'une des normes domine l'autre, par exemple :

$$\exists C > 0, \quad \forall x \in E, \quad \|x\|_1 \le C \|x\|_2.$$

Montrer que les deux normes sont équivalentes.

Exercice 10 \(\ \ \ \ \ \ \ \ \ Jauge d'un convexe

Soit \mathcal{C} un sous-ensemble convexe ouvert d'un espace de Banach E avec $0 \in \mathcal{C}$. Soit $x \in E$. On note $J(x) := \inf\{r > 0; x/r \in \mathcal{C}\}$ sa jauge.

- 1. Montrer que pour tout $x \in E, J(x)$ est fini.
- 2. Montrer que J est une sous-norme sur E, i.e.

$$\forall (x, y, \lambda) \in E^2 \times \mathbb{R}^+, \quad J(\lambda x) = \lambda J(x) \quad \text{ et } \quad J(x+y) \le J(x) + J(y).$$

- 3. Montrer qu'il existe M > 0 tel que $0 \le J(x) \le M||x||, \forall x \in E$ (donc J est continue).
- 4. Montrer que $C = \{x \in E; J(x) < 1\}.$