Contrôle continu # 1

Durée : 1h30, aucun document autorisé.

Exercice 1) Brownien ou pas brownien

- 1. Soit Z une variable aléatoire de loi normale centrée réduite. Pour $t \geq 0$, on pose $X_t := \sqrt{t}Z$. Le processus $(X_t)_{t\geq 0}$ est-il un mouvement brownien?
- 2. Soient X et Y deux mouvements browniens réels indépendants et soit $\theta \in \mathbb{R}$. Pour $t \geq 0$, on pose $Z_t := \cos(\theta) X_t + \sin(\theta) Y_t$. Le processus $(Z_t)_{t \geq 0}$ est-il un mouvement brownien?

Exercice 2 Primitive du mouvement brownien

Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel défini sur un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$. On considère le processus $(X_t)_{t\geq 0}$ défini pour $t\geq 0$ et $\omega\in\Omega$ par

$$X_t(\omega) := \int_0^t B_s(\omega) ds,$$

où la dernière intégrale est une intégrale au sens de Riemann (la fonction $s \mapsto B_s(\omega)$ est continue).

- 1. Montrer que le processus $(X_t)_{t\geq 0}$ est un processus gaussien.
- 2. Expliciter sa moyenne et sa fonction de covariance.

Exercice 3 Martingales, théorème d'arrêt et temps d'atteinte

Soient $(B_t)_{t\geq 0}$ un mouvement brownien réel et $(\mathcal{F}_t)_{t\geq 0}$ sa filtration naturelle. On rappelle que le processus $(X_t)_{t\geq 0}$ défini par $X_t := B_t^2 - t$ est une martingale par rapport à $(\mathcal{F}_t)_{t\geq 0}$. Pour a < 0 < b, on introduit les temps d'atteinte

$$T_a := \inf\{t \ge 0, B_t < a\}, \quad T_b := \inf\{t \ge 0, B_t > b\}, \quad T_{ab} := \inf\{t \ge 0, B_t \notin [a, b]\},$$

dont on rappelle qu'ils sont finis presque sûrement.

1. Montrer que $\mathbb{E}[B_{T_{ab}}] = 0$ et en déduire que

$$\mathbb{P}(T_a < T_b) = \frac{b}{b-a}, \quad \mathbb{P}(T_b < T_a) = \frac{-a}{b-a}.$$

- 2. Montrer que $\mathbb{E}[T_{ab}] = |ab|$.
- 3. Pour $\lambda \in \mathbb{R}^+$ et $t \geq 0$, on pose $M_t^{\lambda} := e^{\lambda B_t \lambda^2 t/2}$. Montrer que le processus $(M_t^{\lambda})_{t \geq 0}$ est une martingale par rapport à $(\mathcal{F}_t)_{t \geq 0}$.
- 4. En déduire l'expression explicite de la transformée de Laplace $\mathbb{E}[e^{-uT_b}]$, pour $u \geq 0$.