Corrigé contrôle continu # 1

Durée : une heure, aucun document autorisé.

Exercice 1) Brownien ou pas brownien

- 1. Soit Z une variable aléatoire de loi normale centrée réduite. Pour $t \geq 0$, on pose $X_t := \sqrt{t}Z$. Le processus $(X_t)_{t\geq 0}$ est-il un mouvement brownien? Non. Certes $(X_t)_{t\geq 0}$ est un processus gaussien mais la fonction de covariance n'est pas la bonne $\mathbb{E}[X_tX_s] = \sqrt{ts} \neq t \wedge s$.
- 2. Soient X et Y deux mouvements browniens réels indépendants et soit $\theta \in \mathbb{R}$. Pour $t \geq 0$, on pose $Z_t := \cos(\theta) X_t + \sin(\theta) Y_t$. Le processus $(Z_t)_{t \geq 0}$ est-il un mouvement brownien? Oui. Le processus $(Z_t)_{t \geq 0}$ est gaussien comme combinaison linéaire de deux processus gaussiens indépendants. De plus, comme $(X_t)_{t \geq 0}$ et $(Y_t)_{t \geq 0}$ sont centrés et indépendants, on a bien

$$\mathbb{E}[Z_t Z_s] = \cos(\theta)^2 \mathbb{E}[X_t X_s] + \sin(\theta)^2 \mathbb{E}[Y_t Y_s] + 2\mathbb{E}[X_t Y_s + X_s Y_t]$$

= $\cos(\theta)^2 \mathbb{E}[X_t X_s] + \sin(\theta)^2 \mathbb{E}[Y_t Y_s] + 0$
= $(\cos(\theta)^2 + \sin(\theta)^2)t \wedge s = t \wedge s$.

Exercice 2 Primitive du mouvement brownien

Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel défini sur un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$. On considère le processus $(X_t)_{t\geq 0}$ défini pour $t\geq 0$ et $\omega\in\Omega$ par

$$X_t(\omega) := \int_0^t B_s(\omega) ds,$$

où la dernière intégrale est une intégrale au sens de Riemann (la fonction $s \mapsto B_s(\omega)$ est continue).

1. Montrer que le processus $(X_t)_{t\geq 0}$ est un processus gaussien. L'intégrale est une intégrale de Riemann, i.e.

$$X_t(\omega) = \lim_{n \to +\infty} X_t^n(\omega), \quad \text{où } X_t^n(\omega) := \frac{t}{n} \sum_{k=1}^n B_{kt/n}.$$

Les sommes partielles X_t^n sont des variables gaussiennes (car le mouvement brownien B est un processus gaussien), leur limite X_t est donc aussi gaussienne d'après le cours. De la même façon, en se ramenant au sommes partielles, on montre que toute combinaison linéaire des variables X_t est également gaussienne, de sorte que $(X_t)_{t\geq 0}$ est bien un processus gaussien.

2. Expliciter sa moyenne et sa fonction de covariance. Pour tout $0 \le s \le t$, les variables B_s et B_sB_t sont intégrables, et par Fubini, on a d'une part

$$\mathbb{E}[X_t] = \int_0^t \mathbb{E}[B_s] ds = 0,$$

et d'autre part

$$\mathbb{E}[X_s X_t] = \int_{v=0}^s \int_{u=0}^t \mathbb{E}[B_u B_v] du dv = \int_{v=0}^s \int_{u=0}^t (u \wedge v) du dv$$

$$= \int_{v=0}^s \left(\int_{u=0}^v u du + \int_v^t v du \right) dv = \int_{v=0}^s \left(\frac{v^2}{2} + v(t-v) \right) dv$$

$$= \frac{s^3}{6} + \frac{ts^2}{2} - \frac{s^3}{3} = s^2 \left(\frac{t}{2} - \frac{s}{6} \right).$$

Exercice 3 Martingales, théorème d'arrêt et temps d'atteinte

Soient $(B_t)_{t\geq 0}$ un mouvement brownien réel et $(\mathcal{F}_t)_{t\geq 0}$ sa filtration naturelle. On rappelle que le processus $(X_t)_{t\geq 0}$ défini par $X_t := B_t^2 - t$ est une martingale par rapport à $(\mathcal{F}_t)_{t\geq 0}$. Pour a < 0 < b, on introduit les temps d'atteinte

$$T_a := \inf\{t \ge 0, B_t < a\}, \quad T_b := \inf\{t \ge 0, B_t > b\}, \quad T_{ab} := \inf\{t \ge 0, B_t \notin [a, b]\},$$

dont on rappelle qu'ils sont finis presque sûrement.

1. Montrer que $\mathbb{E}[B_{T_{ab}}] = 0$ et en déduire que

$$\mathbb{P}(T_a < T_b) = \frac{b}{b-a}, \quad \mathbb{P}(T_b < T_a) = \frac{-a}{b-a}.$$

En appliquant le théorème d'arrêt à la martingale $(B_t)_{t\geq 0}$ et au temps d'arrêt borné $T_{ab} \wedge t$, il vient $\mathbb{E}[B_{T_{ab} \wedge t}] = \mathbb{E}[B_0] = 0$. Comme T_{ab} est fini ps, on a $\lim_{t \to +\infty} T_{ab} \wedge t = T_{ab}$ ps de sorte que $\lim_{t \to +\infty} B_{T_{ab} \wedge t} = B_{T_{ab}}$ presque sûrement. Par ailleurs, la martingale arrétée $(B_{T_{ab} \wedge t})_{t\geq 0}$ est bornée par $\max(|a|, b)$, d'après le théorème de convergence dominée, on conclut que $\mathbb{E}[B_{T_{ab}}] = 0$. Ensuite, selon le lieu de sortie on a

$$\mathbb{E}[B_{T_{ab}}] = a \, \mathbb{P}(T_a < T_b) + b \, \mathbb{P}(T_b < T_a),$$

et comme $\mathbb{P}(T_a < T_b) + \mathbb{P}(T_b < T_a) = 1$, on obtient le résultat annoncé.

2. Montrer que $\mathbb{E}[T_{ab}] = |ab|$.

On applique cette fois le théorème d'arrêt à la martingale $(X_t)_{t\geq 0}$. Pour $t\geq 0$ fixé, on a ainsi

$$\mathbb{E}[T_{ab} \wedge t] = \mathbb{E}[B_{T_{ab} \wedge t}^2].$$

Comme dans la question précédente, par convergence dominée, le membre de droite vérifie

$$\lim_{t \to +\infty} \mathbb{E}[B_{T_{ab} \wedge t}^2] = \mathbb{E}[B_{T_{ab}}^2] = a^2 \, \mathbb{P}(T_a < T_b) + b^2 \, \mathbb{P}(T_b < T_a)$$
$$= a^2 \times \frac{b}{b-a} + b^2 \times \frac{-a}{b-a} = |ab|.$$

Par convergence monotone, le membre de gauche vérifie

$$\lim_{t \to +\infty} \mathbb{E}[T_{ab} \wedge t] = \mathbb{E}[T_{ab}],$$

d'où le résultat.

- 3. Pour $\lambda \in \mathbb{R}^+$ et $t \geq 0$, on pose $M_t^{\lambda} := e^{\lambda B_t \lambda^2 t/2}$. Montrer que le processus $(M_t^{\lambda})_{t \geq 0}$ est une martingale par rapport à $(\mathcal{F}_t)_{t \geq 0}$.
 - Pour $t \geq 0$, la variable M_t^{λ} est \mathcal{F}_t mesurable. Par ailleurs, la fonction $x \mapsto e^{\lambda x}$ est intégrable contre la densité gaussienne associée à la loi $\mathcal{N}(0,t)$ de sorte que les variables $e^{\lambda B_t}$ et M_t^{λ} sont intégrables. Enfin, si $0 \leq s \leq t$, comme $B_t B_s$ est indépendante de \mathcal{F}_s et de loi $\mathcal{N}(0,t-s)$, on a

$$\mathbb{E}[M_t^{\lambda}|\mathcal{F}_s] = e^{-\lambda^2 t/2} \mathbb{E}[e^{\lambda B_t}|\mathcal{F}_s]$$

$$= e^{-\lambda^2 t/2} e^{\lambda B_s} \mathbb{E}[e^{\lambda(B_t - B_s)}|\mathcal{F}_s]$$

$$= e^{-\lambda^2 t/2} e^{\lambda B_s} e^{\lambda^2 (t - s)/2}$$

$$= e^{-\lambda^2 s/2} e^{\lambda B_s}$$

$$= M_s^{\delta}.$$

4. En déduire l'expression explicite de la transformée de Laplace $\mathbb{E}[e^{-uT_b}]$, pour $u \geq 0$. Il s'agit à nouveau d'appliquer le théorème d'arrêt, cette fois à la martingale M_t^{λ} . Pour $t \geq 0$, on a

$$\mathbb{E}[M_{T_b \wedge t}^{\lambda}] = \mathbb{E}[M_0^{\lambda}] = 1,$$

c'est-à-dire

$$\mathbb{E}\left[e^{\lambda B_{T_b \wedge t} - \frac{\lambda^2(T_b \wedge t)}{2}}\right] = 1.$$

Presque sûrement, on a

$$\lim_{t\to +\infty} e^{\lambda B_{T_b\wedge t} - \frac{\lambda^2(T_b\wedge t)}{2}} = e^{\lambda b - \frac{\lambda^2T_b}{2}},$$

par ailleurs, on a la majoration $e^{\lambda B_{T_b \wedge t} - \frac{\lambda^2 (T_b \wedge t)}{2}} \leq e^{\lambda b}$. Par convergence dominée, on conclut que

$$\mathbb{E}\left[e^{-\frac{\lambda^2 T_b}{2}}\right] = e^{-\lambda b},$$

ou encore pour $u \ge 0$

$$\mathbb{E}\left[e^{-uT_b}\right] = e^{-\sqrt{2u}b}.$$