FEUILLE D'EXERCICES # 1

Exercice 1 Processus d'Ornstein-Uhlenbeck

Soit $(B_t)_{t\geq 0}$ un mouvement brownien. On définit pour $t\geq 0$

$$Z_t := e^{-t/2} B_{e^t}.$$

- 1. Montrer que $(Z_t)_{t\geq 0}$ est un processus gaussien centré.
- 2. Montrer que $(Z_t)_{t\geq 0}$ est un processus stationnaire de fonction de covariance $\mathbb{E}[Z_s Z_t] = e^{-\frac{|t-s|}{2}}$.

Exercice 2 Mouvement brownien fractionnaire

Pour 0 < H < 1, on considère la fonction de covariance

$$K_H(t,s) := \frac{1}{2} (|s|^{2H} + |t|^{2H} - |t-s|^{2H}),$$

dont on admettra qu'elle est de type positif. Un processus gaussien centré $(B_t^H)_{t\geq 0}$ de fonction de covariance K_H est appelé mouvement brownien fractionnaire d'indice de Hurst H.

- 1. Montrer que $(B_t^H)_{t\geq 0}$ vérifie la propriété de changement d'échelle $(B_t^H)_{t\geq 0}\stackrel{loi}{=} \lambda^{-H}(B_H(\lambda t))_{t\geq 0}$.
- 2. Montre que l'on a l'égalité $\mathbb{E}[|B_t^H-B_s^H|^2]=|t-s|^{2H}$ et en déduire une information sur la régularité des trajectoires.
- 3. Que peut-on dire du cas particulier H = 1/2?

Exercice 3 Zéros du mouvement brownien

Soit $(B_t)_{t\geq 0}$ un mouvement brownien et $Z:=\{t\in [0,1], B_t=0\}$ l'ensemble de ses zéros sur l'intervalle de temps [0,1]. Montrer que, presque sûrement, Z est un ensemble compact, sans point isolé, de mesure de Lebesgue nulle.

Exercice 4 * Pont Brownien

Soit $(B_t)_{t\geq 0}$ un mouvement brownien, on définit $W_t := B_t - tB_1$ pour $t \in [0,1]$.

- 1. Montrer que le processus $(W_t)_{t\in[0,1]}$ est un processus gaussien centré et expliciter sa fonction de covariance.
- 2. Montrer que pour tout $0 < t_1 < \ldots < t_p < 1$, la loi de $(W_{t_1}, \ldots, W_{t_p})$ admet la densité suivante par rapport à la mesure de Lebesgue :

$$p(x_1, \dots, x_p) = \sqrt{2\pi} p_{t_1}(x_1 - 0) p_{t_2 - t_1}(x_2 - x_1) \dots p_{t_d - t_{d-1}}(x_d - x_{d-1}) p_{1 - t_d}(0 - x_d),$$

où
$$p_t(x) = \frac{e^{-x^2/2t}}{2\pi t}$$

3. Justifier que cette loi peut être vue comme la loi de $(B_{t_1}, \ldots, B_{t_d})$ conditionnellement à $B_1 = 0$.

Exercice 5 Encore un brownien

Soit $(B_t)_{t\geq 0}$ un mouvement brownien. On définit pour $t\geq 0$

$$Z_t := B_t - \int_0^t \frac{B_s}{s} ds.$$

- 1. Vérifier que pour tout $t \geq 0$, la variable aléatoire Z_t est finie presque sûrement.
- 2. Montrer que $(Z_t)_{t\geq 0}$ est un processus gaussien.
- 3. Montrer que le processus $(Z_t)_{t\geq 0}$ est un mouvement brownien.

Exercice 6 Inversion du temps

Soit $(B_t)_{t\geq 0}$ un mouvement brownien. On définit $Z_0=0$ et pour $t>0,\ Z_t:=tB_{1/t}$.

- 1. Vérifier que $(Z_t)_{t\geq 0}$ est à nouveau un mouvement brownien.
- 2. En déduire que lorsque t tend vers l'infini B_t/t tend presque sûrement vers zéro.

Exercice 7 Exponentielle brownienne

Soit $(B_t)_{t\geq 0}$ un mouvement brownien. Pour $\lambda>0$ et $t\geq 0$, on définit $M_t:=e^{\lambda B_t-\frac{\lambda^2 t}{2}}$.

- 1. Montrer que les variables M_t sont intégrables.
- 2. Montrer le processus (M_t) est une martingale par rapport à la filtration $\mathcal{F}_t := \sigma(B_s, s \leq t)$.
- 3. Montrer M_t converge presque sûrement lorsque t tend vers l'infini et préciser sa limite.
- 4. La martingale (M_t) est-elle uniformément intégrable?

Exercice 8 Régularité

Soit $(B_t)_{t\geq 0}$ un mouvement brownien.

1. À l'aide de la loi du zéro-un, montrer que presque sûrement

$$\liminf_{t\to 0^+} \frac{B_t}{\sqrt{t}} = -\infty, \quad \limsup_{t\to 0^+} \frac{B_t}{\sqrt{t}} = +\infty.$$

2. En déduire que presque sûrement, $t\mapsto B_t$ n'est pas dérivable à droite en zéro. Généraliser.

Exercice 9 \star Sur les martingales

Soit $(M_t)_{t\geq 0}$ une martingale positive à trajectoires continues issue de $x\geq 0$. On suppose que M_t converge presque sûrement vers zéro lorsque t tend vers l'infini.

1. Montrer que, pour tout y > x, on a alors

$$\mathbb{P}\left(\sup_{t>0} M_t \ge y\right) = \frac{x}{y}.$$

- 2. En déduire la loi de la variable aléatoire $\sup_{0 \le t \le T_0} (x + B_t)$ lorsque $(B_t)_{t \ge 0}$ est un mouvement brownien et $T_0 = \inf\{t \ge 0, x + B_t = 0\}$.
- 3. Si $\lambda > 0$, en introduisant une martingale exponentielle bien choisie, montrer la variable aléatoire

$$\sup_{t\geq 0} \left(B_t - \frac{\lambda t}{2} \right)$$

suit la loi exponentielle de paramètre λ .